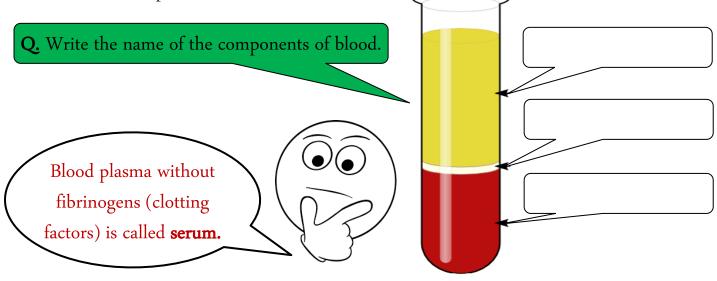



Lecture Sheet: 05


Science (Chapter-06: Transport in Organisms)

Class: IX



### 1) Plasma

**Blood plasma** is a yellowish liquid component of **blood** that holds the **blood** cells of whole **blood in** suspension.



Sanjib Kumar Pal (palsanjib15@gmail.com)

About 55% of our **blood** is **plasma**, and the remaining 45% are **blood** corpuscles (free floating or suspended small cells).

- Plasma carries nutrients, hormones, and proteins to the different parts of the body.
- It carries away the waste products of cell metabolism from various tissues to the organs responsible for detoxifying and/or excreting them.
- Plasma proteins keep the blood pH slightly alkaline by binding excess hydrogen ions in the blood.
- Plasma proteins can also supply amino acids if required by being broken down by macrophages.
- In addition, plasma is the vehicle for the transport of the blood cells through the blood vessels.

# Q. Why is plasma considered as most important component of blood?

| Z |
|---|
|   |
|   |
|   |

## Blood cells or corpuscles:

All of the cells found in the blood come from bone marrow. They begin their life as stem cells, and they mature into three main types of cells—

- 1. Red blood cells (Erythrocytes)
- 2. White blood cells (Leukocytes)
- 3. Platelets (Thrombocytes)

### 1. Red blood cells (Erythrocytes)

- $\checkmark$  RBCs are the biconcave cells and without nucleus in humans; also known as erythrocytes.
- ✓ RBCs contain the iron-rich protein called haemoglobin; give blood its red color.
- ✓ RBCs are the most copious blood cell produced in bone marrows.
- ✓ The average viability of RBCs is 120 days.
- $\checkmark$  The main function of RBCs is to transport oxygen and carbon dioxide.
- Lungs (Haemoglobin +  $O_2$  = Oxyhaemoglobin)  $\rightarrow$  Heart  $\rightarrow$  Different organs (Oxyhaemoglobin =  $O_2$  + Haemoglobin)
- Organs ((Haemoglobin +  $CO_2$  = Carbaminohaemoglobin)  $\rightarrow$  Heart  $\rightarrow$  Lungs (Carbaminohaemoglobin =  $CO_2$  + Haemoglobin)
- $CO_2$  diffuses into RBC;  $CO_2 \xrightarrow{} Carbonic anhydrase (CA) of RBC \xrightarrow{} H_2CO_3 \xrightarrow{} HCO_3 \xrightarrow{} HCO_3 \xrightarrow{} H^+$

A buffer system is a solution that resists a change in pH when acids or bases are added to it.

Carbonic anhydrase is an enzyme that assists rapid inter-conversion of carbon dioxide and water into carbonic acid, protons and bicarbonate ions.

# Q. Why is the blood of grasshopper colorless?

Q. How does RBC helps in transportation of O<sub>2</sub> & CO<sub>2</sub>?

### 2. White blood cells (Leucocytes)

Leucocytes are the colorless blood cells.

 $\checkmark$  They are colorless because it is devoid of haemoglobin.

They are produced in bone marrow and lymphatic glands.

✓ The average viability of WBCs is 1-15 days.

✓ produced in bone marrows.

 $\checkmark$  The average viability of RBCs is 120 days.

 $\checkmark$  WBCs mainly contribute to immunity and defense mechanism.

They are classified as agranulocytes and granulocytes.

#### a) Agranulocytes

They are leukocytes, with the absence of granules in their cytoplasm. Agranulocytes are further classified into monocytes and lymphocytes.

#### 1) Lymphocytes

- They play a vital role in producing antibodies.
- Their size ranges from 8 to 10 micrometres.
- They are commonly known as natural killer cells.
- They play an important role in body defense.
- These white blood cells are colourless cells formed in lymphoid tissue, hence referred to as lymphocytes.
- There are two main types of lymphocytes-B lymphocytes and T lymphocytes.
- These cells are very important in the immune systems and are responsible for humoral and cell-mediated immunity.

**Humoral**- relating to the body fluids, especially with regard to immune responses involving antibodies in body fluids as distinct from cells.

#### 2) Monocytes

- These cells usually have a large bi-lobed nucleus, with a diameter of 12 to 20 micrometres.
- The nucleus is generally of half-moon shaped or kidney-shaped and it occupies 6 to 8 per cent of WBCs. These white blood cells have a single bean-shaped nucleus, hence referred to as Monocytes.

- They are the garbage trucks of the immune system.
- The most important functions of monocytes are to migrate into tissues and clean up dead cells, protect against the blood-borne pathogens and they move very quickly to the sites of infections in the tissues.

| Lymphocyte | Monocyte |
|------------|----------|
|            |          |
|            |          |
|            |          |
|            |          |

### Q. Write down three differences between lymphocyte and monocyte.

# b) Granulocytes

They are leukocytes, with the presence of granules in their cytoplasm. The granulated cells include- eosinophil, basophil, and neutrophil.

## 1) Eosinophils

- They are the cells of leukocytes, which are present in the immune system.
- These cells are responsible for combating infections in parasites of vertebrates and for controlling mechanisms associated with the allergy and asthma.
- Eosinophil cells are small granulocyte, which is produced in the bone marrow and makes 2 to 3 per cent of whole WBCs. These cells are present in high concentrations in the digestive tract.

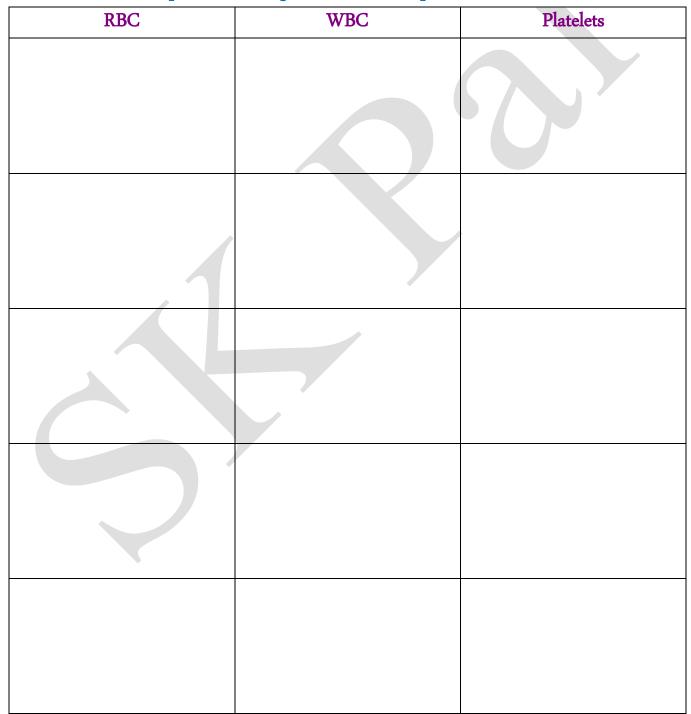
# 2) Basophils

- They are the least common of the granulocytes, ranging from 0.5 to 1 per cent of WBCs.
- They contain large cytoplasmic granules, which plays a vital role in mounting a nonspecific immune response to pathogens, allergic reactions by releasing histamine and dilates (expands) the blood vessels.

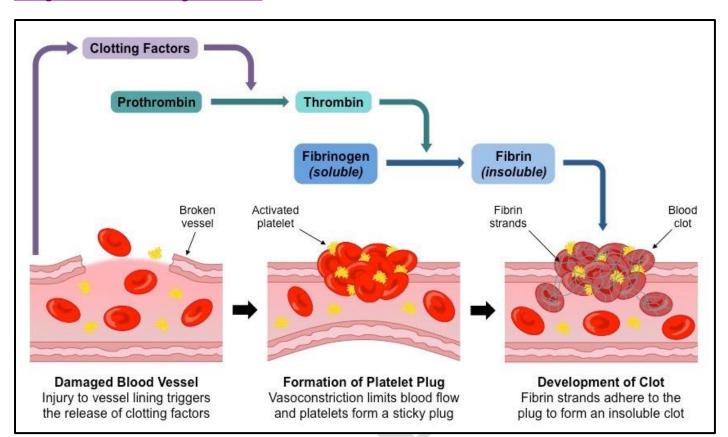
- These white blood cells have the ability to be stained when exposed to basic dyes, hence referred to as basophil.
- These cells are best known for their role in asthma and their result in the inflammation and bronchoconstriction in the airways.
- They secrete serotonin, histamine and heparin (an anticoagulant (blood thinner) that prevents the formation of blood clots inside blood vessels).

# 3) Neutrophils

- They are normally found in the bloodstream.
- They are predominant (major) cells, which are present in pus.
- Around 60 to 65 per cent of WBCs are neutrophils with a diameter of 10 to 12 micrometres.
- The nucleus is 2 to 5 lobed and cytoplasm has very fine granules.
- Neutrophil helps in the destruction of bacteria with lysosomes, and it acts as a strong oxidant.
- Neutrophils are stained only using neutral dyes. Hence, they are called so.
- Neutrophils are also the first cells of the immune system to respond to an invader such as a bacteria or a virus.
- The lifespan of these WBCs extend for up to eight hours and are produced every day in the bone marrow.


### Q. Write down three comparisons among eosinophil, basophil and neutrophil.

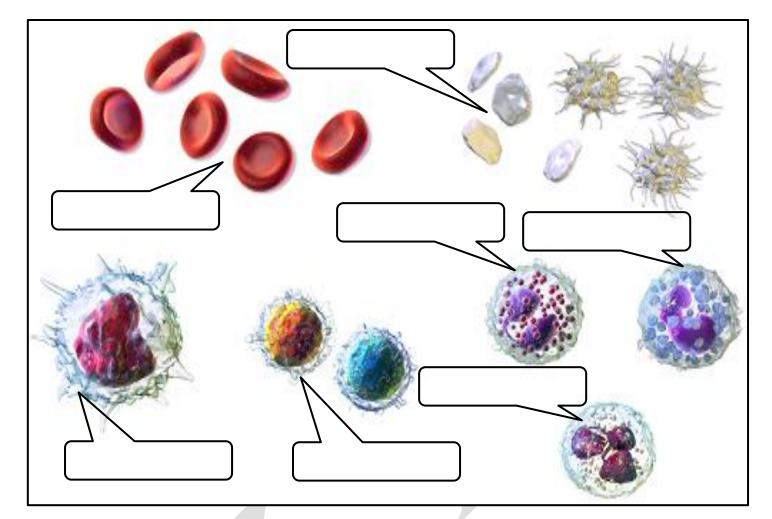
| Basophil | Neutrophil |
|----------|------------|
|          |            |
|          |            |
|          |            |
|          |            |
|          |            |
|          |            |
|          | Basophil   |


### 3. Platelets (Thrombocytes)

- Platelets are small in size, colorless, spindle shaped and non-nucleated.
- Thrombocytes are specialized blood cells produced from bone marrow.
- Platelets come into play when there is bleeding or haemorrhage.
- Their average viability is 5-10 days.
- They help in clotting and coagulation of blood. Platelets help in coagulation during a cut or wound.

### Q. Write down five comparisons among RBC, WBC and platelets.




### Coagulation or clotting of blood:



Q. How does thrombocyte helps in coagulation of blood when the endothelial surface of blood vessels is injured?

| <br>  |
|-------|
| <br>, |
| <br>  |
|       |

# Q. Identify the following blood corpuscles.

